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Abstract

This paper presents derivation of the pressure correction equation appropriate for colocated grids within the

framework of the SIMPLE algorithm. It is shown that checkerboard prediction of pressure can be prevented by em-

ploying algebraic smoothing pressure correction [Numer. Heat Transfer, Part B 29 (1996) 441] that is very simple to

implement on both the structured as well as unstructured grids. The ability of the smoothing correction (which is shown

to be independent of transformations of the system of coordinates) in providing the necessary dissipation is explained

and the connection of the former with requirements of the Stokes�s laws is established.
� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. The problem considered

In the solution of Navier–Stokes equations in their

discretised form, the discretised velocities that are used

to satisfy mass conservation equation (from which the

pressure distribution is determined) should also satisfy

the momentum equations. When this requirement is

implemented explicitly, there results the well known

staggered grid arrangement for location of pressure and

velocity variables. The SIMPLE [3] and the MAC [4]

methods employed this strategy on structured grids.

Later, Baliga and Patankar [1,2] employed this strategy

on unstructured grids.

In the computation of 3-dimensional flows in com-

plex geometries using structured curvilinear or unstruc-

tured grids, several practical advantages are achieved by

emloying non-staggered or colocated grids in which the
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velocities and the pressure (as well as other scalars) are

stored/defined at the same grid location (that is, at the

nodes). Though practically attractive, the colocated ar-

rangement is beset with one major difficulty. Thus, when

(a) the mass conserving control-volume (or cell-face)

velocities are (one- or multi-dimensionally) linearly

interploated between neighbouring momentum con-

serving nodal velocities and,

(b) the pressure gradient appearing in the momentum

equations written for the nodal velocities is repre-

sented by straight-forward central-differencing (the

so called 2-Dn differencing) approximation,

the predicted pressure distribution shows checkerboard

or zig-zag [6] variation whereas the predicted velocities

are often smooth. The nature of this zig-zag variation is

shown in [7] for structured Cartesian grids and in [8] for

unstructured grids. Further, Date [7] has shown that

the extent of zig-zagness reduces as the mesh size is re-

fined and that if the true pressure variation were to

be spatially linear or constant, no zig-zagness occurs

in the predicted pressure. These findings contrast the
ed.
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Nomenclature

AE, AW , AN , AS, AP , BP coefficients in discretised

equations

Dx, Dy coefficients in pressure correction equation

_mm mass source

p pressure

R residual

S source term

u x-direction velocity

v y-direction velocity

w z-direction velocity

Greek symbols

a under-relaxation factor for velocity

b under-relaxation factor for pressure

l dynamic viscosity

D control volume

Dx, Dy control volume dimensions

q density

U general variable

k second viscosity coefficient

k1 multiplier of p–�pp
r normal stress

s shear stress

Suffixes

P , N , S, E, W refers to grid nodes

n, s, e, w refers to cell-faces

f refers to cell-face

m refers to mass conservation

s refers to smoothing

x, y, z refers to x-, y- and z-directions

Superscripts

l iteration counter

o old time

u, v refers to u, v momentum equations

–– multidimensional average
0 correction
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notional illustration of checkerboarding or zig-zagness

described in [6,19].

There have been three cures for the prevention of the

problem of pressure zig-zagness suggested so far de-

pending on the identified cause. The first and, the most

popular one, was suggested by Rhie and Chow [13] who

traced the cause of the problem to imperfect represen-

tation of the cell-face velocities that satisfy the mass

conservation. In this sense, the cure is sought in response

to the situation (a) described above. They therefore

suggested a modelling expression for the cell-face velo-

cities involving one-dimensional interpolated pressure

gradients. The notion embodied in the equal-order pres-

sure gradient evaluation suggested by Prakash and Pat-

ankar [5] is similar. Majority of the publications in the

last two decades (see, for example, [5,13–17]) have ad-

hered to this form of cure on both structured as well as

unstructured grids. The second cure viewed the problem

of zig-zagness as one that is caused by the so called ve-

locity–pressure de-coupling. This implies that when the

pressure gradient appearing in the nodal momentum

equations is represented as in (b) above, the pressure pP
(say) at the node P does not appear in the discretised

equations for uP and vP . Date [7] therefore proposed a

higher-order discretisation for the pressure gradient so

that the discretised equations are infact sensitised to pP .
Both the above cures lack fluid dynamical justification

for the cure as well as for the cause of the problem of

zig-zagness. Date [9,10] therefore re-derived the pres-

sure-correction equation appropriate for colocated grids

which led to identification of a smoothing pressure

correction. While the effectiveness of this third cure was
rigorously demonstrated along with the demonstartion

of its simplicity, the fluid dynamical basis of the cure has

remained unexplained. The main purpose of this paper is

therefore to explain, in somewhat detailed and longish

pedagogical tone, the cure prescribed by Date [9,10].

The pedagogical tone is prompted first by the fact that

several CFD researchers have sought clarification about

the author�s cure. Second and, more importantly, it turns

out that several variants of Rhie and Chow [13] cure

produce smooth pressure distributions on coarse grids

and the problem itself disappears when the mesh size is

refined. The same applies to the second cure of Date [7].

This compounds the problem of understanding of the

main issues even further. Third, neither of the three cures

bring any appreciable economic advantage when accu-

rate solutions employing fine mesh sizes are of interest.

All cures merely mimic the satisfaction of predicting

smooth pressure distributions on coarse colocated grids

that the staggered grid approach so naturally provides.

1.2. The present contribution

In this paper, Date�s [9,10] cure is explained from a

fluid-dynamical stand point. Several derivations (not

found in [9,10]) applicable to structured and unstruc-

tured grids are therefore presented along with the dis-

cussion of the issues (often overlooked by researchers)

pertaining to node-centered and cell-face-centered dis-

positions of structured grids. It is shown that the so

called fourth-order dissipation is also a natural outcome

of the fluid dynamical view. A brief version of the pre-

sent paper is published in [11].



A.W. Date / International Journal of Heat and Mass Transfer 46 (2003) 4885–4898 4887
The overall discussion is first carried out with refer-

ence to structured Cartesian grids within the framework

of the SIMPLE algorithm. So the familiarity with the

latter is assumed. For complete understanding of the

derivations, the reader will need to carry out some al-

gebra him/herself.
1 Schlichting [25] shows this improbability by considering the

case of an isolated sphere of a compressible isothermal gas

subjected to uniform normal stress. Now if k is not set to

�ð2=3Þl, the gas will undergo oscillations.
2. Navier–Stokes equations

2.1. Equations of motion

As presented in Schlichting [25], the equations of

motion in non-conservative form can be written as

Dq
Dt

¼ �qr � V ¼ �q
ou
ox

�
þ ov
oy

þ ow
oz

�
ð1Þ

q
Du
Dt

¼ orx

ox
þ osyx

oy
þ oszx

oz
ð2Þ

q
Dv
Dt

¼ osxy
ox

þ ory

oy
þ oszy

oz
ð3Þ

q
Dw
Dt

¼ osxz
ox

þ osyz
oy

þ orz

oz
ð4Þ

where, using Tensor notation, the shear stresses are

specified by

sij ¼ l
oui
oxj

�
þ ouj

oxi

�
ð5Þ

and the normal stresses are given by

rx ¼ �p þ r0
x ¼ �p þ qþ 2l

ou
ox

ð6Þ

ry ¼ �p þ r0
y ¼ �p þ qþ 2l

ov
oy

ð7Þ

rz ¼ �p þ r0
z ¼ �p þ qþ 2l

ow
oz

ð8Þ

In the above normal stress expressions, r0 is called the

deviotoric stress and the quantity q in its definition is

newly introduced in this paper. The significance of this

quantity will become shortly clear. Schlichting [25] and

Warsi [26], for example, define a space averaged pressure

�pp as

�pp ¼ � 1

3
ðrx þ ry þ rzÞ ð9Þ

Now, an often overlooked requirement of the Stokes�s
relations is that, in a continuum, �pp must equal the point

value of pressure p and the latter, in turn, must equal the

thermodynamic pressure pth. Thus,

�pp ¼ p ¼ pth ¼ p � q� 2
lr � V ð10Þ
3

We now consider different flow cases to derive sig-

nificance of q.

1. Case 1. ðV ¼ 0Þ In this hydrostatic case

�pp ¼ p � q ð11Þ

But in this case, p can only vary linearly with x, y, z
and therefore the point value of p exactly equals its

space averaged value �pp in both continuum as well as

discretised space and hence q ¼ 0 exactly.

2. Case 2. (l ¼ 0 or r � V ¼ 0) Clearly when l ¼ 0 (in-

viscid flow) or r � V ¼ 0 (constant density incom-

pressible flow) equation (11) holds. But, in this case,

since fluid motion is considered, p can vary arbitrarily

with x, y and z and therefore p may not equal �pp in a

discrete space. However, without violating the con-

tinuum requirement, we may set

q ¼ k1ðp � �ppÞ ð12Þ

where k1 is an arbitrary constant. In most textbooks,

where continuum is assumed, k1 is trivially set to

zero.

3. Case 3. (l 6¼ 0 and r � V 6¼ 0) This case represents

either compressible flow where density is a function

of both temperature and pressure or incompressible

flow with temperature dependent density. Thus,

�pp ¼ p � q
�

þ 2

3
lr � V

�
ð13Þ

In this case, Stokes�s requirement is satisfied if we set

q ¼ k1ðp � �ppÞ þ kr � V ð14Þ

where k is the well-known second viscosity coefficient

whose value is set to �ð2=3Þl even in a continuum.

It is instructive to note the reason for setting k ¼
�ð2=3Þl. For, if this was not done, it would amount to

ð1� k1Þðp � �ppÞr � V ¼ k

�
þ 2

3
l

�
ðr � V Þ2 ð15Þ

Clearly, therefore, the system will experience dissi-

pation (or reversible work done at finite rate since r � V
is associated with the rate of volume change, see equa-

tion (1).) even in an isothermal flow [25,26]. This is, of

course, highly improbable. 1 It is now easy to under-

stand that the same interpretation can be afforded to

k1ðp � �ppÞ part of q in Eq. (12) or (14).
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Fig. 1. Typical Cartesian structured grid––cell-faces are mid-

way between the nodes.

4888 A.W. Date / International Journal of Heat and Mass Transfer 46 (2003) 4885–4898
Before taking up the issue of zig-zag pressure pre-

diction via discretised Navier–Stokes equations, follow-

ing observations are made.

1. Whenever q is finite (non-zero), the system will expe-

rience dissipation and the requirement p ¼ �pp ¼ pth
will not hold. As shown above, the hydrostatic case

is the only one in which q is identically zero in both

the discretised space as well as continuum. In all

other cases when spatial variations of p may in gen-

eral depart from linearity, qmust be specially tailored

both in a continuum as well as in a discrete space.

2. In an isotropic fluid, q (as it appears in each of the

normal stress expressions) cannot have directional

properties. In other words, q must be invariant under

transformation of the system of coordinates. In all

cases considered above, this requirement is also satis-

fied. This observation, it will be shown, has bearing

on the Rhie and Chow [13] interpolation scheme.

2.2. Discretised Navier–Stokes equations

In all further discussion, we consider 2-dimensional

flows and write the N–S equations in conservative form

as

oq
ot

þ oðqufÞ
ox

þ oðqvfÞ
oy

¼ 0 ð16Þ

oqu
ot

þ oðqufuÞ
ox

þ oðqvfuÞ
oy

¼ � op
ox

þ o

ox
l
ou
ox

� �
þ o

oy
l
ou
oy

� �
ð17Þ

oqv
ot

þ oðqufvÞ
ox

þ oðqvfvÞ
oy

¼ � op
oy

þ o

ox
l
ov
ox

� �
þ o

oy
l
ov
oy

� �
ð18Þ

The above equations 2 are discretised using control

volume approach in which the equations are integrated

over a finite chosen control volume. In Fig. 1, the chosen

grid disposition with control volume surrounding node

P (say) is shown. In this figure, the locations of the

dotted lines (or the cell-faces) that define the control

volumes are so chosen that they lie midway between the

adjacent nodes. In this case, the nodes will not be at

the geometric centre of the control volumes when non-

uniform grids are chosen. 3
2 The significance of suffix �f� will become shortly clear.
3 Some researchers prefer to have nodes at the geometric

centres of the control volumes. Then the cell-faces will not be

midway between adjacent nodes. It will be shown later that this

difference is, however, inconsequential to the main issues

discussed in this paper.
Now assuming that all variables vary linearly be-

tween immediate grid nodes and that the source terms

are uniform over the control volume, it can be shown

that the discretised momentum equations will read as [6]

uP ¼ AEuE þ AWuW þ ANuN þ ASuS � Dop=oxþ BPuoP
APu þ BP

ð19Þ

vP ¼ AEvE þ AWvW þ ANvN þ ASvS � Dop=oy þ BPvoP
APv þ BP

ð20Þ

where the coefficients are defined as

AE ¼ leDy
Dxþ

�
� qeufe

2
Dy
�

AW ¼ lwDy
Dx�

�
þ qwufw

2
Dy
�

ð21Þ

AN ¼ lnDx
Dyþ

�
� qnvfn

2
Dx
�

AS ¼ lsDx
Dy�

�
þ qsvfs

2
Dx
�

ð22Þ

APu ¼ APv ¼ AE þ AW þ AN þ AS ð23Þ

BP ¼ qo
PD
Dt

ð24Þ

In deriving Eq. (23), the satisfaction of mass con-

servation over the control volume surrounding node P is

implicit. From the above equations, it is clear that suffix

�f � is attached to velocities that appear at the cell-faces;

velocities without suffix �f � appear at the nodes. Further,
coefficients Ai, i ¼ E;W ;N ; S are written in their raw

(CDS) form; they can be altered for different convection

schemes such as UDS, Power etc. [6].
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Aiu0fi ¼P
Aiv0fi ¼ 0 used in the SIMPLE algorithm has been invoked.
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All quantities appearing at the cell-faces (e, w, n and

s) are now linearly interpolated in terms of their values

at the nodal locations since when computing on colo-

cated grids, all variables are stored at the nodal loca-

tions. For fluid properties l and q, one dimensional

linear interpolation suffices. For velocities, however, it

will be shown later that multidimensional averaging may

be preferred.

Now, the pressure gradient terms are evaluated by

central-difference so that

op
ox

����
P

¼ pe � pw
Dx

¼ pE � pW
2Dx

ð25Þ

op
oy

����
P

¼ pn � ps
Dx

¼ pN � pS
2Dy

ð26Þ

When the above equations are substituted in Eqs.

(19) and (20), it becomes clear that uP and vP are not

sensitised to pP . This is known as the velocity–pressure

decoupling problem that eventually leads to the zig-zag

pressure prediction.

3. Pressure smoothing on Cartesian grids

3.1. Mass conserving pressure correction equation

In the SIMPLE algorithm [3], while the velocities are

determined from Eqs. (19) and (20) with a guessed

pressure field, the latter is sought to be iteratively cor-

rected via satisfaction of the mass conservation equation

(16) over the control volume surrounding node P . This is
done by deriving the mass conserving pressure correction

equation. This equation must be identical for both the

staggered grid as well as the colocated grid arrangements

because the pressure is stored at the same grid node

location in either arrangements. Here, the derivation of

this equation as carried out by Date [9] is repeated for

completeness including the case of unsteady flows.

In unsteady flows, at a new time step, nodal velocities

uP and vP are calculated from Eqs. (19) and (20). Their

counterparts at cell-face locations e and w (where uf is
defined) and n and s (where vf is defined) will read as

ulþ1
f ¼

P
Aiulþ1

f i � Doplþ1=ox
APuf þ BP

þ BP
APuf þ BP

uof ð27Þ

vlþ1
f ¼

P
Aivlþ1

f i � Doplþ1=oy
APvf þ BP

þ BP
APvf þ BP

vof ð28Þ

where l is iteration level and
P

Aiui and
P

Aivi simply

represent summation over immediate neighbours of

locations of u and v for which equations (27) and (28)

are written. Thus, when equation (27), for example, is

written for cell-face e, i ¼ ee, w, Ne and Se.
When steady flow is considered, the above equations

still apply if we set BP ¼ 0 (or, Dt ¼ 1). However, in an

iterative procedure, under-relaxation is often necessi-
tated. This need can be met in two ways. In the first, one

may regard the steady flow as falsely unsteady and

specify a false time step Dt so that BP > 0. In the second

method, the usual global under-relaxation factors (say,

a) are used. Then it is possible to show that in the first

alternative, a ¼ AP=ðAP þ BPÞ. But here, a will vary

from node to node because AP and BP vary with node

position. It is also possible to show that this variation in

a is in the desirable direction; large when AP is small

and small when AP is large. Whether variable or global

under-relaxation is used is a matter of choice and does

not in any way alter the discussion to follow.

Note that on colocated grids, Eqs. (27) and (28) are

not actually solved but imagined to be solved. Now, the

lþ 1 level velocities, it is expected, will satisfy the mass

conservation equation. Thus

oqlþ1

ot
þ oðqulþ1

f Þ
ox

þ oðqvlþ1
f Þ

oy
¼ 0 ð29Þ

Substitution of Eqs. (27) and (28) in Eq. (29) there-

fore yields

oqlþ1

ot
þ o

ox

qlþ1
P

Aiulþ1
f i � Doplþ1=oxþ BPuof

� �
APuf þ BP

� �

þ o

oy

qlþ1
P

Aivlþ1
f i � Doplþ1=oy þ BPvof

� �
APvf þ BP

� �
¼ 0

ð30Þ

In order to develop the pressure correction equation,

we now write

ulþ1
f ¼ ulf þ u0f vlþ1

f ¼ vlf þ v0f plþ1 ¼ pl þ p0m ð31Þ

where p0m is the mass conserving pressure correction.

Substituting Eq. (31) in Eq. (30) yields 4

o

ox
Dx

op0m
ox

� �
þ o

oy
Dy

op0m
oy

� �

¼ oðqulfÞ
ox

þ oðqvlfÞ
oy

þ oqlþ1

ot
� o

ox
½DxRuf � �

o

oy
½DyRvf �

ð32Þ

where

Dx ¼
qlþ1D

APuf þ BP
Dy ¼

qlþ1D
APvf þ BP

ð33Þ

and Ruf and Rvf are residuals per unit volume given by

Ruf ¼
ðAPuf þ BPÞulf �

P
Aiulf i� BPuof

D
þ opl

ox
ð34Þ
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Rvf ¼
ðAPvf þ BPÞvlf �

P
Aivlf i� BPvof

D
þ opl

oy
ð35Þ

The partial differential equation (32) is applicable to

both staggered and colocated grids as well as to struc-

tured and unstructured meshes.

3.2. The staggered grid form

When Eq. (32) is discretised, uf and Ruf must be

evaluated at the cell-faces e and w and likewise vf and Rvf

must be evaluated at the cell-faces n and s. The discre-

tised form is

APp0m;P ¼ AEp0m;E þ AWp0m;W þ ANp0m;N þ ASp0m;S

� _mmP þ _mmR ð36Þ

where

AE ¼ qlþ1
e D2y

ðAPuf þ BPÞe
AN ¼ qlþ1

n D2x
ðAPvf þ BPÞn

etc: ð37Þ

_mmP ¼ ðqlþ1
e ulfe � qlþ1

w ulfwÞDy þ ðqlþ1
n vlfn � qlþ1

s vlfsÞDx

þ ðqlþ1
P � qo

P Þ
D
Dt

ð38Þ

_mmR ¼ ðAERufeDx
þ �AWRufwDx

�Þþ ðANRvfnDy
þ �ASRvfsDy

�Þ
ð39Þ

Note, however, that when the momentum equations

are fully converged, Ruf and Rvf are rendered zero since

the overall procedure solves Eqs. (27) and (28) for the

cell-face velocities uf and vf . It is for this reason that the

_mmR is set to zero even during the iterative procedure.

Effectively, therefore, the applicable differential equation

for staggered grids can be written as

o

ox
Dx

op0m
ox

� �
þ o

oy
Dy

op0m
oy

� �

¼ oðqulfÞ
ox

þ oðqvlfÞ
oy

þ oqlþ1

ot
ð40Þ

It is instructive to note that the above equation was

derived via an alternative route in the original paper by

Patankar and Spalding [3]. Without elaboration, we note

that Eq. (40) is solved subject to boundary condition

op0m
on

����
boundary

¼ 0 ð41Þ

where n is normal to the boundary.

3.3. The unsuccessful colocated grid form

Since the above staggered grid form enjoyed success

at smooth pressure prediction even on coarse grids, it

was readily adopted for the colocated grids as well with

_mmR ¼ 0. The only change made was that the cell-face
velocities were replaced by their interpolated (averaged)

counterparts. That is, ufe, for example, was replaced by

�uue ¼ 0:5ðuP þ uEÞ, etc. Thus, _mmP was written as

�_mm_mmP ¼ ðqlþ1
e �uule � qlþ1

w �uulwÞDy þ ðqlþ1
n �vvln � qlþ1

s �vvlsÞDx

þ ðqlþ1
P � qo

P Þ
D
Dt

ð42Þ

and the effective pressure correction equation read as

o

ox
Dx

op0m
ox

� �
þ o

oy
Dy

op0m
oy

� �

¼ oðqlþ1�uulÞ
ox

þ oðqlþ1�vvlÞ
oy

þ oqlþ1

ot
ð43Þ

When the above equation was solved with boundary

condition (41), the predicted pressure distribution

showed zig-zagness in a general flow. However, an im-

portant observation noted in [7] is that no zig-zagness is

predicted if the true pressure distribution was linear or

constant.

The reader can verify these experiences by consider-

ing simple flows. Thus, if fully developed steady laminar

flow between parallel plates is computed as a two-

dimensional elliptic flow in which parabolic velocity

profile is prescribed at inlet and zero-gradient boundary

condition is prescribed on velocity at exit, it will be

found that Eq. (43) along with Eqs. (19) and (20) does

indeed predict linear pressure distribution in the stream-

wise direction and constant pressure in the transverse

direction while parabolic axial velocity profile is pre-

dicted at all axial locations as would be expected. Date

[7] considered buoyancy affected steady elliptic flow in a

right angled corner for which, with artificial boundary

conditions, Shih and Ren [23] formulated an exact so-

lution. In this flow, at high Rayleigh numbers, again the

pressure distribution in the direction of gravity is linear

and that in the horizontal direction is constant. Date [7]

showed that Eq. (43) was indeed successful in repro-

ducing the exact solution.

On the other hand, if one considered a steady one-

dimensional flow in a pipe with mass injection at con-

stant rate through the walls, then the exact solution

shows that axial velocity must increase linearly with the

streamwise coordinate whereas the pressure variation

must be parabolic. Date [7] showed that if staggered

grids were employed with Eq. (40), the predicted pres-

sure distribution on coarse grid was indeed smooth (but

not accurate due to grid coarseness) but, with colocated

grids and equation (43), the predicted pressure distri-

bution showed zig-zagness on coarse grids because the

true pressure distribution departed from linearity.

The nature of zig-zagness is further demonstarted

here by considering the well known steady flow in a

square lid-driven cavity. In Fig. 2 computed vertical

mid-plane values of ðp � px¼0:5;y¼1Þ are plotted along the

x-axis. The vertical coordinate is along the y-axis. Three



-0.000 0.025 0.050
0.0

0.2

0.4

0.6

0.8

1.0

STAGGERED

COLOCATED

15 * 15 GRID

-0.000 0.025 0.050
0.0

0.2

0.4

0.6

0.8

1.0

STAGGERED

COLOCATED

21 * 21 GRID

-0.000 0.025                0 .050
0.0

0.2

0.4

0.6

0.8

1.0

41 * 41 GRID

Fig. 2. Pressure variation at X ¼ 0:5, Re ¼ 100, square cavity with a moving lid.

A.W. Date / International Journal of Heat and Mass Transfer 46 (2003) 4885–4898 4891
grid sizes (15 · 15, 21 · 21 and 41· 41) are used. The

lines represent the staggered grid solutions and the co-

located grid solutions are shown by open circles. It is

seen that on coarser grids, predicted pressure distribu-

tion on colocated grids is zig-zag whereas the staggered

grid pressure distributions are smooth. The zig-zagness

is seen to be more pronounced in regions where the

staggered grid pressure distribution departs considerably

from linearity. At the finest mesh size, however, there is

hardly any difference between the staggered and the

colocated grids solutions, both being nearly equally

smooth.

The above examples conclusively demonstrate that

the problem of zig-zagness occurs only when coarse

grids are used and when the true pressure departs from

linearity. It will be shown in a later section that zig-

zagness is a result of artificial dissipation introduced in

the system. For removal of zig-zagness, therefore, this

dissipation must be countered.

3.4. The popular successful colocated grid forms

Contrary to the above conclusion, the great majority

of publications of the past two decades still view the

problem of zig-zagness as being caused by imperfect cell-

face velocity interpolation and accept the validity of Eq.

(40) on colocated grids. Thus, with _mmR ¼ 0, Eq. (38) is

used in the evaluation of source term in Eq. (36) and ufe,
for example, was modelled by Rhie and Chow [13] as

ufe ¼ �uue �
Dx

q
op
ox

����
e

�
� op

ox

����
e

�
ð44Þ

where

�uue ¼
1

2
ðuP þ uEÞ ð45Þ

op
ox

����
e

¼ 1

2

op
ox

����
P

�
þ op

ox

����
E

�
ð46Þ
There are numerous variants of the above form to

warrent mention here. But, two alternative forms will be

mentioned. The first, by Peric [19], replaced nodal ve-

locities uP and uE by their discretised forms (see Eq. (19))

so that the resulting expression read as

ufe ¼
1

2

P
Aiui

APu þ BP

����
P

�
þ

P
Aiui

APu þ BP

����
E

�
� Dx

q
op
ox

����
e

ð47Þ

The second, by Thiart [22], evaluated ufe from ana-

lytical solution to the one-dimensional conduction-

convection problem introduced by Spalding [21]. Thus,

the cell-face velocity was determined from a truncated

momentum equation. When Eqs. (44), (47) or analytical

solution is used, zig-zagness is indeed removed on a

coarse grid but, some embarassments are encountered.

1. The predicted solutions for u, v and p show depen-

dence on global under-relaxation factor a used in

the momentum equations. This dependence was

cured by Majumdar [20] while employing the Peric

model expression (47). This matter will be further ex-

plained in a later subsection.

2. Miller and Schmidt [17] carried out computations of

a backward-facing-step problem using staggered and

colocated grids of identical dimensions employing

Eq. (44) on the colocated grids. They found that

ufe, as predicted by Eq. (44), not only did not match

with that predicted by the staggered grid procedure,

ufe did not even remain bounded between uP and

uE. The analytical solution used by Thiart, on the

other hand, will ensure this boundedness. Date [7]

has explained this problem of unboundedness.

3. There is no theoretically rigorous proof for introduc-

tion of the pressure gradient terms in Eq. (44). It is

essentially of a it works variety.

4. The analytical solution used by Thiart [22] leads to

extremely complex evaluations of _mmP even on Carte-

sian grids and, even when exponential terms in the
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analytical solution are replaced by the POWER-

LAW expressions of Patankar [6].

5. Since the ufe expressions are viewed as models of cell-

face velocity, they are also used in the evaluation of

convective coefficients (see Eqs. (21)–(24)) without

any theoretical justification. In fact, practical experi-

ence shows that in order to predict smooth pressure

distributions, model expressions are required only in

the calculation of _mmP term; for convective coefficients,

simple linearly interpolated expressions for cell-face

velocities suffice. This is not surprising because even

on staggered grids, the convective coefficients in the

cell-face momentum equations are evaluated from

linearly interpolated velocities at the cell-faces of

the staggered control volumes and which may not

satisfy mass conservation for these control volumes.

6. Those who adhere to model expressions for the cell-

face velocity for the cure of the zig-zagness problem

demonstrate inconsistency of their practice when

comparing their numerical predictions with the ex-

perimental data. 5 Thus, if for example, experimental

data were available at location e (say), the practitio-

ners readily compare their values of �uue with the exper-

imental data rather than the model expressions for ufe
used in their computer codes.

Thus, it should be clear from the above discussion

that the success of the modelled expressions and there-

fore the very notion of more perfect cell-face velocity

modelling itself must be regarded as fortuitous.

3.5. Date’s [9] colocated grid form

Since Eq. (32) is applicable to both staggered and

colocated grids, the discretised form of the mass con-

serving pressure correction Eq. (36) is also valid on both

types of grids. However, since momentum equations are

not solved at the cell-faces, the _mmP term must be evalu-

ated from interpolated cell-face velocities. Thus, Date�s
[9] derivation begins with

APp0m;P ¼ AEp0m;E þ AWp0m;W þ ANp0m;N þ ASp0m;S

� �_mm_mmP þ _mmR ð48Þ

�_mm_mmP ¼ ðqe�uu
l
e � qw�uu

l
wÞDy þ ðqn�vv

l
n � qs�vv

l
sÞDx

þ ðqlþ1
P � qo

P Þ
D
Dt

ð49Þ

and _mmR is already defined in Eq. (39). The task now is to

represent velocities and the residuals at the cell-faces in

terms of nodal values. Here, the cell-face quantities are
5 The author has learnt about this inconsistency from

practioners. The statement cannot be substantiated on the

basis of published information.
represented by multidimensional averaging. Thus at the

cell-face e, for example,

�uule ¼
1

2

1

2
ðulP

�
þ ulEÞ þ

Dyþulse þ Dy�ulne
Dyþ þ Dy�

�

ulse ¼
1

4
ðulP þ ulE þ ulS þ ulSEÞ

ulne ¼
1

4
ðulP þ ulE þ ulN þ ulNEÞ

ð50Þ

Now since the momentum equations are solved at the

nodal positions, there is no guarantee that the residuals at

the cell-faces will vanish even at convergence. Thus, _mmR

cannot be equated to zero as was done in the staggered

grid procedure. Eqs. (34) and (35), however, show that

evaluations of Ruf and Rvf will require coefficients Ai cor-

responding to the cell-face locations. No doubt these can

be calculated but, inmulti-dimensional flows, this calcula-

tion will turn out to be prohibitively expensive. We there-

fore resort to averaging and write Rufe , for example, as

Rufe ¼
ðAPu þ BPÞulf �

P
Aiulf i

D

�����
e

� BP
D

uofe þ
opl

ox

����
e

ð51Þ

where overbar again denotes multidimensional averag-

ing. Now, again using Eq. (34), we write

ðAPu þ BPÞulf �
P

Aiulf i
D

�����
e

� BP
D

uofe ¼ Rufe �
opl

ox

�����
e

ð52Þ

where Rufe is evaluated from equation such as Eq. (50).

Rufe thus comprises only of residuals at the nodes for

which momentum equations are solved. Thus, Rufe will

vanish at convergence 6 and Eq. (52) may be written as

ðAPu þ BPÞulf �
P

Aiulf i
D

�����
e

� BP
D

uofe ¼ �opl

ox

�����
e

ð53Þ

Now the average pressure gradient is also evaluated

by multidimensional averaging. Thus

opl

ox

�����
e

¼ 1

2

1

2

opl

ox

����
P

��
þ opl

ox

����
E

�

þ Dyþopl=oxjse þ Dy�opl=oxjne
Dyþ þ Dy�

�

¼ 1

4

plE � plW
Dxþ þ Dx�

þ plEE � plP
Dxþþ þ Dxþ

� �

þ 1

4

Dy�

Dyþ þ Dy�
plE þ plNE � plP � plN

Dxþ

� �

þ 1

4

Dyþ

Dyþ þ Dy�
plE þ plSE � plP � plS

Dxþ

� �
ð54Þ

To simplify the above evaluations, we introduce the

following definitions:
6 This is similar to the practice adopted on staggered grids.
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�ppx;P ¼ Dx�pE þ DxþpW
Dx� þ Dxþ

ð55Þ

�ppy;P ¼ Dy�pN þ DyþpS
Dy� þ Dyþ

ð56Þ

�ppP ¼ 1

2
ð�ppx;P þ �ppy;P Þ ð57Þ

�ppx;E ¼ DxþpEE þ DxþþpP
Dxþ þ Dxþþ ð58Þ

�ppy;E ¼ Dy�pNE þ DyþpSE
Dy� þ Dyþ

ð59Þ

�ppE ¼ 1

2
ð�ppx;E þ �ppy;EÞ ð60Þ

Substituting the above equations in Eq. (54), it can be

shown that

opl

ox

�����
e

¼ 1

2

plE � plP
Dxþ

"
þ �pplE � �pplP

Dxþ

#
¼ 1

2

o

ox
ðpl þ �pplÞje ð61Þ

Therefore, using the foregoing derivations, it follows

that Eq. (51)can be written as:

Rufe ¼ � 1

2

o

ox
ðpl þ �pplÞje þ

opl

ox

����
e

¼ op0s
ox

����
e

ð62Þ

where

p0s ¼
1

2
ðpl � �pplÞ ð63Þ

A similar excercise at other cell-faces will show that

Rufw ¼ op0s
ox

����
w

Rvfn ¼
op0s
oy

����
n

Rvfs ¼
op0s
oy

����
s

ð64Þ

Substituting the above results in Eq. (39)

_mmR ¼ AE
op0s
ox

� ����
e

Dxþ � AW
op0s
ox

����
w

Dx�
�

þ AN
op0s
oy

� ����
n

Dyþ � AS
op0s
oy

����
s

Dy�
�

ð65Þ

Now, using the above equation along with Eq. (49),

Eq. (32) can be effectively written as

o

ox
Dx

op0m
ox

� �
þ o

oy
Dy

op0m
oy

� �

¼ oðqlþ1�uulÞ
ox

þ oðqlþ1�vvlÞ
oy

þ oqlþ1

ot
� o

ox
Dx

op0s
ox

� �

� o

oy
Dy

op0s
oy

� �
ð66Þ
Further simplification

Eq. (66) will now be simplified further by writing

o

ox
Dx

op0

ox

� �
þ o

oy
Dy

op0

oy

� �

¼ oðqlþ1�uulÞ
ox

þ oðqlþ1�vvlÞ
oy

þ oqlþ1

ot
ð67Þ

where the total pressure correction p0 is given by

p0 ¼ p0m þ p0s ð68Þ

Writing of Eq. (67) is permissible because multipliers

of gradients of p0m and p0s in Eq. (66) are identical. Fur-

ther, when computing on colocated grids, the unknown

boundary pressures are linearly extrapolated from their

near boundary values. Therefore,

op0s
on

����
boundary

¼ 0 ð69Þ

The above boundary condition is also applicable to

p0m (see Eq. (41)). Therefore, Eq. (67) can be solved with

op0

on

����
boundary

¼ 0 ð70Þ

Thus Eq. (67) with boundary condition (70) is the

pressure correction equation appropriate for colocated

grids. The discretised form of this equation is

APp0P ¼ AEp0E þ AWp0W þ ANp0N þ ASp0S � �_mm_mmP ð71Þ

Once this equation is solved, p0m distribution can be

recovered from the computed p0 distribution via Eq. (68)

since p0s can be calculated from Eq. (63).

3.6. Compressible flow form

In compressible flows, density is a function of pres-

sure. Therefore

qlþ1 ¼ ql þ q0
m ¼ ql þ p0m

RT
¼ ql þ p0 � p0s

RT
ð72Þ

Making the above substitution and treating q0
mop

0
m=

ox ¼ 0, etc. it can be shown that the compressible form

of Eq. (67) is

o

ox
Dl

x

op0

ox

�
� p0

RT
u�
�
þ o

oy
Dl

y

op0

oy

�
� p0

RT
v�
�

¼ o

ox
ql�uul
�

� p0s
RT

u�
�
þ o

oy
ql�vvl
�

� p0s
RT

v�
�
þ oqlþ1

ot

ð73Þ

where

u�f ¼ �uul � Dl
x

ql

op0s
ox

v�f ¼ �vvl �
Dl

y

ql

op0s
oy

ð74Þ

Eq. (73) has been successfully used by Date [10] to

predict compressible flow with shock using a upwind
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differencing scheme. Note that in incompressible flows,

the starred velocities are zero. Also, qlþ1 ¼ ql ¼ q (say)

in incompressible flow. In all further discussion, we shall

assume that incompressible flow is under consideration.
4. Comparison of a Date’s form with other forms

4.1. Comparison with staggered grid form

It will be appreciated that Eq. (40) for staggered grid

and Eq. (67) have the same form. But p0m, uf and vf in the

former are replaced by p0, �uu and �vv in the latter. Further

differences can be appreciated from the overall calcula-

tion procedure described in Table 1.

The table shows that the SIMPLE procedure on the

two types of grids is the same except for step 2 where the

mass conserving pressure correction p0m is extracted from

total pressure correction p0 on colocated grids. This ex-

traction, however, is a simple algebraic operation. It will

be shown in the next section that p0s provides the nec-

essary smoothing to prevent zig-zag pressure prediction.

Hence p0s is called the smoothing pressure correction.

Finally, in both procedures, the momentum residuals

are evaluated in rms sense from

RU ¼
X

all nodes

ðAP
n"

þ BPÞUP �
X

AiUi

�
þ SU

	o2

#0:5

ð75Þ

where U ¼ u, v (on colocated grids) and U ¼ uf , vf (on
staggered grids). On staggered grids, the mass residual

Rm is evaluated from Eq. (38) so that

Rm ¼
X

all nodes

ð _mmP Þ2
" #0:5

ð76Þ

Note that the above evaluation is the same as

Rm ¼
X

all nodes

APp0m;P

�"
�
X

Aip0mi

	2#0:5
ð77Þ
Table 1

Simple procedure

Staggered grid

1 Guess pressure pl and solve Eqs. (27) and (28) to o

and vlf distributions

2 Solve Eq. (36) to obtain p0m distribution

3 Correct velocities and pressure using

plþ1
P ¼ plP þ bp0m;P

ulþ1
fe ¼ ulfe � Dx

q ðp0m;E � p0m;P Þ=Dxþ

vlþ1
fn ¼ ulfn �

Dy

q ðp0m;N � p0m;PÞ=Dyþ

4 Check momentum and mass residuals
where the coefficients Ai are those given in Eq. (37). On

staggered grids, it is of course convenient to evaluate Rm

from Eq. (76) rather than Eq. (77).

On colocated grids, however, Rm cannot be evaluated

from Eq. (76) because �_mm_mmP is evaluated in terms of in-

terpolated nodal velocities via equation (49) and this
�_mm_mmP 6¼ 0 even at convergence. It is therefore appropriate

to evaluate Rm from Eq. (77) on colocated grids because

it is this equation that truely represents the mass im-

balance. This is an important departure from the stag-

gered grid practice that a casual reader may easily

overlook.
4.2. Comparison with the popular forms

The overall calculation procedure employing the

more popular forms discussed earlier is the same as that

used for colocated grids described above except that the

notion of smoothing pressure is not embodied in their

conception. Instead, the _mmP term in their pressure cor-

rection equation is evaluated from modelled expressions.

There are, however, further differences.

It is possible, for example, to show that the present

author�s form of the pressure correction equation also

implicitly conveys cell-face velocity interpolation. Thus

comparison of Eqs. (40) and (66) will show that at cell-

face e, for example, the author�s form with global under-

relaxation a implies that

ufe ¼ �uue �
qaD
APu

� �
e

op0s
ox

����
e

¼ �uue �
qaD
APu

� �
e

op
ox

����
e

"
� 1

2

oðp þ �ppÞ
ox

�����
e

#
ð78Þ
where �uue and �pp are multidimensionally averaged. Note

that the above forms were exactly derived. Now, it can

be shown that Eq. (44) by Rhie and Chow [13] implies

that
Colocated grid

btain ulf Guess pressure pl and solve Eqs. (19) and (20)

to obtain ul and vl distributions

Solve Eq. (71) to obtain p0 distribution and

extract p0m ¼ p0 � p0s ¼ p0 � 1
2
ðpl � �pplÞ

Correct velocities and pressure using

plþ1
P ¼ plP þ bp0m;P

ulþ1
P ¼ ulP � Dx

q ðp0m;E � p0m;W Þ=ð2DxÞ

vlþ1
P ¼ ulP �

Dy

q ðp0m;N � p0m;SÞ=ð2DyÞ

Check momentum and mass residuals
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ufe ¼ �uue �
qD
APu

e

� �
op0s;x
ox

�����
e

¼ �uue �
qD
APu

e

� �
op
ox

����
e

"
� 1

2

oðp þ �ppxÞ
ox

�����
e

#
ð79Þ

where �uue and �ppx (see Eq. (55)) are one-dimensionally

averaged. Note, however, that the terms in the square

brackets are not multiplied by a as in Eq. (78). It is this

negligence (probably a result of intuitive postulation of

Eq. (44)) that led Majumdar [20] to propose a modifi-

cation to obtain a––independent solutions by adding

extra terms in the Peric�s form (Eq. (47)). Eq. (79),

however, shows that the same effect can be achieved

quite easily in the Rhie and Chow form by multiplying

the square bracket by a.
7 Note that in the SIMPLE procedure, attempt is made to

satisfy mass conservation to machine accuracy as measured

through Rm. In constant density flows this implies that

r � V ¼ 0.
5. The notion of smoothing pressure correction

It is now important to validate the notion of the

smoothing pressure correction p0s (see Eq. (63)) intro-

duced by the author. This will be done in more ways

than one.

1. From Eqs. (34) and (64), it follows that

Ruf ¼
ðAPu þ BPÞulf �

P
Aiulf i � BPuof

D
þ opl

ox
¼ op0s

ox
ð80Þ

and similarly

Rvf ¼
ðAPv þ BPÞulf �

P
Aiulf i � BPvof

D
þ opl

oy
¼ op0s

oy

ð81Þ

When written in differential form, the above equa-

tions indeed imply that

rx ¼ �p þ p0s þ 2l
ou
ox

ð82Þ

ry ¼ �p þ p0s þ 2l
ov
oy

ð83Þ

Therefore

1

2
ðrx þ ryÞ ¼ �p þ p0s þ lðou

ox
þ ov
oy
Þ

¼ �p þ p0s þ lr � V ð84Þ

Comparison of the above equations with Eqs. (6), (7)

and (10) shows that p0s in discretised equations plays

the same role as that played by q. Further, p0s, like q,
is also invariant with the transformation of the sys-

tem of coordinates. Also, in the hydrostatic case

where the true pressure varies linearly with x and y, p0s
like q is exactly zero (see Eqs. (55) and (56)). When
the true pressure departs from linearity, however, p0s
is finite (at least, on coarse grids). Further, our deri-

vation shows that the value of k1 introduced in Eq.

(12) must be 0.5 and the implied continuum (not the

discretised) value of r � V must be zero when density

is constant. 7 On fine meshes, p ! �pp in the discrete

space and hence p0s ! 0 as required in the continuum.

2. Note that in the Rhie and Chow model, equations

analogous to (82) and (83) will read as

rx ¼ �p þ p0s;x þ 2l
ou
ox

ð85Þ

ry ¼ �p þ p0s;y þ 2l
ov
oy

ð86Þ

It will be appreciated that Eqs. (85) and (86) are not

acceptable because p0s;x and p0s;y will introduce direc-

tional dependence in the evaluation of the normal

stresses (see comment 2 in Section 2.1). Thus, from a

fluid dynamical stand-point, an important require-

ment of Stokes�s laws is violated.
3. Eq. (55) defines �ppx;P . It is easy to show that this defi-

nition implies that �ppx;P is an independent solution to

o2p=ox2jP ¼ 0 and similarly �ppy;P is an independent so-

lution to o2p=oy2jP ¼ 0. Thus, �ppP as defined in equa-

tion (57) is average of the above two independent

solutions and also equals �0:5ðrx þ ryÞ. Therefore,
p0s ¼ 0:5ðp � �ppÞ represents the required smoothing

pressure correction when the true pressure variation

departs from linearity. Further, �ppP is also invariant

with the transformation of the coordinate system as re-

quired. These interpretations are useful because they

enable evaluation of �ppP on structured curvilinear and

unstructured meshes without any ambiguity. Also,

evaluation of �ppP requires address to immediate neigh-

bours of P (that is pE, pN , etc.). This is a significant ad-
vantage that is also retained when computing on

unstructured and structured curvilinear meshes [8,12].

4. It is important to relate p0s to the notion of the so

called fourth-order dissipation terms invoked in the

solution of unsteady Navier–Stokes equations. This

is essentially a variant of the MAC method [4] on co-

located grids. In these solutions, even steady flows are

solved by the false transient method. For a small

time-step, AP � BP so that the appropriate pressure

correction equation on colocated grids will read as

o2p0m
ox2

þ o2p0m
oy2

¼ 1

Dt
oðq�uulÞ
ox

"
þ oðq�vvlÞ

oy

#
� o2p0s

ox2

�
þ o2p0s

oy2

�

ð87Þ
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The smoothing pressure correction terms in Eq. (87)

will now be discretised assuming uniform grid. Then,

it can be shown that

o2p0s
ox2

����
P

¼ 1

2

pE � 2pP þ pW
Dx2

 
� �ppE � 2�ppP þ �ppW

Dx2

!
ð88Þ

Now substituting for the average pressures using

definitions such as (57) and (60), it can be shown that

o2p0s
ox2

����
P

¼ � 1

8
Dx2

o4p
ox4

� ����
P

þ Dy2
o4p

ox2oy2

����
P

�
ð89Þ

A similar derivation for o2p0s=oy
2jP will show that

o2p0s
ox2

þ o2p0s
oy2

¼ � 1

8
Dx2

o4p
ox4

�
þ ðDx2 þ Dy2Þ o4p

ox2oy2

þ Dy2
o4p
oy4

�
ð90Þ

Note that the right-hand side of the above equation

contains cross-derivative terms not found in [24]. This

is because, multidimensional averaging practice has

been adopted in the author�s work. The terms on the

right-hand side of Eq. (90) are called the fourth-order

dissipation terms and they tend to zero as the mesh

size is refined. The same conclusion was attributed to

p0s.
5. It is also important to show the relevance of the

smoothing pressure correction to the Predictor–

Corrector methods such as the projection method

or the PISO method [18]. These methods employ a

Poisson�s equation for pressure rather than for pres-

sure-correction. In these methods, Eqs. (19) and

(20) are solved at the nodes in the predictor stage em-

ploying pressure at the old time step. The velocity

field so determined is called the � velocity field. Thus

Predictor stage

ðAPu þ BPÞu�P ¼
X

Aiu�i jP þ BPuoP þ auP ðpoW � poEÞ
ð91Þ

ðAPu þ BPÞv�P ¼
X

Aiv�i jP þ BPvoP þ avP ðpoS � poN Þ
ð92Þ

Corrector stage

In this stage, momentum equations at the cell-

faces are postulated and a new �� velocity field is

imagined. Then

ðAPu þ BPÞeu��fe ¼
X

Aiu�fije þ BPeuofe þ aueðp�P � p�EÞ
ð93Þ

ðAPu þ BPÞwu��fw ¼
X

Aiu�f ijw þ BPwuofw þ auwðp�W � p�P Þ
ð94Þ
ðAPv þ BPÞnv��fn ¼
X

Aiv�f ijn þ BPnvofn þ avnðp�P � p�N Þ
ð95Þ

ðAPv þ BPÞnv��fs ¼
X

Aiv�f ijs þ BPsvofs þ avsðp�S � p�P Þ
ð96Þ

In the above equations, p� field is unknown. The
��-velocity field is now subjected to mass-conserva-

tion constraint. Thus

qea
u
eu

��
fe � qwa

u
wu

��
fw þ qna

v
nv

��
fn � qsa

v
sv

��
fs

þ ðqP � qo
P Þ

D
Dt

¼ 0 ð97Þ

Substitution of Eqs. (93)–(96) in Eq. (97) results in

an equation for p�. This equation reads as

APp�P ¼ AEp�E þ AWp�W þ ANp�N þ ASp�S � _mmP ð98Þ

where the coefficients are the same as those given in

Eq. (37) and _mmP is given by

ðqP � qo
P Þ

D
Dt

þ qea
u
e

X
Aiu�f i;e

�
þ BPeuofe

	
� qwa

u
w

X
Aiu�fi;w

�
þ BPwuofw

	
þ qna

v
n

X
Aiv�f i;n

�
þ BPnvofn

	
� qsa

v
s

X
Aiv�fi;s

�
þ BPsvofs

	
¼ _mmP ð99Þ

The bracketed terms in the above equation can be

evaluated exactly by discretising the momentum

equations at the cell-faces. To avoid this expensive

evaluation, however, Peric [19] used an approximate

representation as follows. Thus for the face e, for
example,X

Aiu�f i;e þ BPeuofe ¼
1

2

X
Aiu�i;P

�
þ
X

Aiu�i;E
	

þ 1

2
ðBPuoÞP
�

þ ðBPuoEÞ
�

ð100Þ

The above equations require coefficients only at the

nodes and, these are known. Thus, _mmP can be con-

structed from known quantities. It must be noted,

however, that equations such as Eq. (100) have no

theoretical justification.

Solution of Eq. (98) gives the new pressure field

p�. The new �� velocity field at the nodes is now

evaluated explicitly from

ðAPu þ BPÞu��P ¼
X

Aiu�i jP þ BPuoP þ auP ðp�W � p�EÞ
ð101Þ

ðAPu þ BPÞv��P ¼
X

Aiv�i jP þ BPvoP þ avP ðp�S � p�N Þ
ð102Þ

This completes one predictor–corrector operation.

This operation can be carried out several times at a

time step.
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The above algorithm can also be executed by in-

troducing the idea of smoothing pressure correction.

Thus, following Eqs. (34) and (62), it can be shown

that Eq. (100) can be written asX
Aiu�f i;e þ BPeuofe ¼ ðAPu þ BPÞe�uue

þ De

op0

ox

(
� 1

2

oðp0 � �ppoÞ
ox

)

ð103Þ

where �uue is given by Eq. (50) and superscript o ap-

plies for the first predictor step. Substitution of the

equations of the above type in Eq. (99), it can be

shown that an equation for a modified pressure p�mod

can be derived. The equation reads as

APp�mod;P ¼ AEp�mod;E þ AWp�mod;W þ ANp�mod;N

þ ASp�mod;S � �_mm_mmP ð104Þ

where �_mm_mmP is given by Eq. (42). After solving the above

equation, the p� field can be recovered as

p�P ¼ p�mod;P þ
1

2
ðpoP þ �ppoP Þ ð105Þ

The cell-averaged poP can be calculated as described

earlier.

6. All the derivations so far have been carried out for

cell-face centered grid dispositions. Many research-

ers, however, prefer node-centered grid dispositions.

It is necessary therefore to demonstrate applicability

of the smoothing pressure correction to the latter dis-

positions.

When node-centered disposition is employed, the

cell-faces are notmidway between the adjacent nodes.

However, when the pressure (or pressure correction)

gradients at the cell-faces are discretised, one writes

op
ox

����
e

¼ pE � pP
Dxþ

op
oy

����
n

¼ pN � pP
Dyþ

ð106Þ

The above evaluations are considered valid because

of the assumption of linear variation of pressure be-

tween adjacent grid nodes. Mathematically speaking,

if the above evaluations are considered second-order

accurate then the evaluations are as good as being

expressed as if the cell-faces were located midway

between the adjacent nodes.

Thus, if the pressure correction Eq. (67) was to be

discretised based on second-order accurate evalua-

tions of gradients of p0 at the cell-faces, one must

effectively assume that the cell-faces were infact lo-

cated midway between the adjacent grid nodes. This

important matter is most often overlooked by re-

searchers adhering to node-centered grid disposi-

tions.
Thus, Eq. (67), along with its discretised form

(71), is directly applicable to node-centered grid dis-

position. The same also applies to evaluations of �pp as

indicated in Eqs. (55)–(57).

7. It will be instructive to examine the influence of

smoothing pressure correction on the rate of conver-

gence of the overall calculation procedure. To do this,

the square cavity problem is solved using staggered

and colocated grids. Identical grid size, initial guess

and under-relaxation parameters are assumed in the

two cases.

Fig. 3 shows variations of Ru, Rv and Rm (41· 41
grids, a ¼ 0:5). It is seen that both colocated and stag-

gered grid computations demonstrate the same conver-

gence rate. The computations were stopped when the

momentum residuals were below 10�5. At this level of

convergence the mass residuals are seen to be an order of

magnitude lower on both grids. Thus, the author�s
smoothing pressure correction technique does not in-

fluence the rate of convergence nor does it influence the

level of mass source satisfaction.
6. Conclusions

In this paper, the present author�s procedure [9,10]

for removing the problem of zig-zag pressure prediction

on colocated grids has been comprehensively discussed

giving more complete details of algebra. The novel as-

pect of the procedure is the introduction of smoothing

pressure correction p0s. The main advantages of the

procedure are:

1. Zig-zag prediction is now removed through a simple

algebraic operation that retains the smallest compu-

tational module throughout the calculation proce-

dure on both structured and unstructured grids.
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2. The introduction of smoothing pressure correction

offers a more rigorous fluid dynamical view of the

problem of zig-zag pressure prediction. The smooth-

ing pressure correction derives from the requirement

of Stokes�s laws for the normal stresses. In this sense,

the paper presents a new expression for the normal

stress that is valid for both the continuum as well

as the discretised space.

3. The total pressure correction Eq. (67) and the conse-

quent evaluation of p0s (see Eq. (63)) are valid for both

cell-face centered and the node-centered grid disposi-

tions. This must be seen as a natural consequence of

the previous conclusion.

4. The notion of smoothing pressure correction is con-

sistent with the so called fourth-order dissipation

terms that are commonly introduced in the solution

of unsteady Navier–Stokes equations. It is further

shown that methods employing Poisson�s equation

for pressure (rather than pressure-correction) can

also be implemented by employing the smoothing

pressure-correction.

5. The computed results indicate that the author�s pres-
sure smoothing technique has covergence properties

that are nearly identical to those possessed by the

staggered grid procedure. It is also shown that the

mass residual at convergence is also same as that

found on staggered grids. On colocated grids, the

mass residual must be evaluated from Eq. (77).
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